Neural model for learning-to-learn of novel task sets in the motor domain
نویسندگان
چکیده
During development, infants learn to differentiate their motor behaviors relative to various contexts by exploring and identifying the correct structures of causes and effects that they can perform; these structures of actions are called task sets or internal models. The ability to detect the structure of new actions, to learn them and to select on the fly the proper one given the current task set is one great leap in infants cognition. This behavior is an important component of the child's ability of learning-to-learn, a mechanism akin to the one of intrinsic motivation that is argued to drive cognitive development. Accordingly, we propose to model a dual system based on (1) the learning of new task sets and on (2) their evaluation relative to their uncertainty and prediction error. The architecture is designed as a two-level-based neural system for context-dependent behavior (the first system) and task exploration and exploitation (the second system). In our model, the task sets are learned separately by reinforcement learning in the first network after their evaluation and selection in the second one. We perform two different experimental setups to show the sensorimotor mapping and switching between tasks, a first one in a neural simulation for modeling cognitive tasks and a second one with an arm-robot for motor task learning and switching. We show that the interplay of several intrinsic mechanisms drive the rapid formation of the neural populations with respect to novel task sets.
منابع مشابه
EMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملTwo Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate
Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...
متن کاملNumerical solution of fuzzy differential equations under generalized differentiability by fuzzy neural network
In this paper, we interpret a fuzzy differential equation by using the strongly generalized differentiability concept. Utilizing the Generalized characterization Theorem. Then a novel hybrid method based on learning algorithm of fuzzy neural network for the solution of differential equation with fuzzy initial value is presented. Here neural network is considered as a part of large eld called ne...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013